Year 3	Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.
Year 4	Recall multiplication and division facts for multiplication tables up to 12×12 Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers Recognise and use factor pairs and commutativity in mental calculations Multiply two-digit and three-digit numbers by a one-digit number using formal written layout Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.

Vocabulary

Multiply, times, lots of, groups of, product, repeated addition
Divide, share equally, group, remainder

dividend $-\frac{20}{4}=5 \cdot-$-avolikent
$15 \div 3=5$ is the number of times you can subtract 3 from 15 before you get to 0 .

15-3-3-3-3-3=0 $15 \div 3-5$
$73 \div 5$

Strategies

Multiplication: Arrays, repeated addition on number line, grid method, expanded column method (with place value headings and brackets for support)
Division: Sharing with manipulatives, grouping as repeated subtraction on a number line, chunking

x	30	5
7	210	35

$210+35=245$

\section*{123×5
 | x | 100 | 20 | 3 |
| :---: | :---: | :---: | :---: |
| 5 | 500 | 100 | 15 |}

500
$+100$
$\quad 15$
$+\quad 615$

$$
\begin{aligned}
& \begin{array}{l}
5 \sqrt[5]{73} \\
\frac{-50}{23}
\end{array} \quad(\underline{10} \times 5) \\
& \frac{-20}{3} \quad(4 \times 5)
\end{aligned} \quad 10+4=14
$$

\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Mastery} \& \& \multirow[t]{2}{*}{Three children calculated \(7 \times 6\) in different ways. Identify each strategy and complete the calculations.} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Multiply a number by itself and then make one factor one more and the other one less. What happens to the product? \\
E.g.
\end{tabular}} \\
\hline \& Mastery with Greater Depth \& \& \\
\hline \[
\begin{array}{rlr}
\text { Complete the following: } \& 3 \times \square=12 \& 4 \times \square=20 \\
\square \times 3=15 \& 8 \times \square=24
\end{array}
\] \& \begin{tabular}{l}

\square $\square \times$ \square $\square=$?

Putting the digits 1,2 and 3 in the empty boxes, how many different calculations can you make?

Which one gives the largest answer?

Which one gives the smallest answer?

 \&

Annie
$7 \times 6=7 \times 5+\square$
$=\square$
:---
$7 \times 6=7 \times 7-\square$
$=\square$
:---
commutative law
$7 \times 6=\square \times \square$
$=\square$

 \&

$$
\begin{array}{ll}
4 \times 4=16 & 6 \times 6=36 \\
5 \times 3=15 & 7 \times 5=35
\end{array}
$$

What do you notice? Will this always happen?
\end{tabular}

\hline Use a column method to calculate the following:

$$
123 \times 3 \quad 324 \times 4 \quad 234 \times 8
$$ \& Find the missing digits.

$$
2[
$$

\square 2 \square 1 \square 4 \& Now find the answer to 6×9 in three different ways. \&

\hline \& $$
\begin{aligned}
& \times 8 \\
& \times 176 \\
& \hline 112 \\
& \hline 736 \\
& \hline
\end{aligned}
$$ \& Tom ate 9 grapes at the picnic. Sam ate 3 times as many grapes as Tom. How many grapes did they eat altogether? \& Sally has 9 times as many football cards as Sam. Together they have 150 cards. How many more cards does Sally have than Sam?

\hline
\end{tabular}

